数据仓库项目架构
数据仓库
数据仓库是一个用于存储和管理大量数据的系统,它可以帮助企业更好地理解其业务数据,从而做出更好的决策。数据仓库项目架构通常包括以下几个部分:
1. 数据源:数据仓库的数据来源,可以是各种业务系统、日志文件、外部数据源等。
2. 数据采集:将数据从数据源采集到数据仓库中,可以使用ETL(Extract-Transform-Load)工具,如Kettle、Talend等。
3. 数据存储:将采集到的数据存储在数据仓库中,可以使用关系型数据库(如MySQL、Oracle)、分布式文件系统(如HDFS)、NoSQL数据库(如HBase)等。
4. 数据处理:对存储在数据仓库中的数据进行处理和分析,可以使用大数据处理框架(如Hive、Spark、Flink等)。
5. 数据查询:提供数据查询和分析的接口,可以使用SQL查询语言(如HiveQL、SparkSQL等)。
6. 数据可视化:将查询和分析的结果以图表、报表等形式展示出来,可以使用BI工具(如Tableau、Power BI等)。
数据仓库项目架构的设计需要考虑数据量、数据类型、查询性能、数据安全性、扩展性等因素,以实现高效、可靠、可扩展的数据仓库系统。
ETL:
- E:Extract(提取)数据,从数据源中提取数据。
- T:Transform(转换)数据,对提取的数据进行清洗、转换、格式化等操作。
- L:Load(加载)数据,将转换后的数据加载到数据仓库中。
数据库与数据仓库的区别:
- 数据库:主要用于存储和管理业务数据,支持事务处理、数据一致性等特性,适用于在线事务处理(OLTP)场景。
- 数据仓库:主要用于存储和管理历史数据,支持大规模数据存储、数据分析和报表生成等特性,适用于在线分析处理(OLAP)场景。
基于cloudera manager大数据统一管理平台,在此平台之上构建大数据相关的软件(zookeeper,HDFS ,YARN,HIVE,OOZIE,SQOOP ,HUE...)
构建大数据数仓项目涉及的相关软件:
- zookeeper: 分布式协调服务,Hadoop集群管理工具
- HDFS:分布式文件系统,数据存储
- YARN:分布式资源管理器,资源调度
- HBase:分布式列式数据库,数据存储
- Hive:数据仓库工具,数据查询分析
- Spark:分布式计算框架,数据处理
- Flume:分布式日志收集工具,数据收集
- Sqoop:数据迁移工具,数据导入导出
- Oozie:工作流调度工具,任务调度
- Kafka:分布式消息队列,数据传输
- Hue:Web界面,数据查询和管理
- Impala:分布式SQL查询引擎,数据查询
- Solr:分布式搜索引擎,数据搜索
- Elasticsearch:分布式搜索引擎,数据搜索
- Kibana:数据可视化工具,数据展示
- Flink:分布式流处理框架,数据处理
- Storm:分布式实时计算框架,数据处理
- Hue:Web界面,数据查询和管理,提升Hadoop集群的易用性与用户体验
- FineBi:商业智能工具,数据报表可视化,提升数据展示与分析的效率与效果
项目架构中数据流转的流程
首先业务是存储在MySQL数据库中,通过sqoop对MySQL的数据进行数据的导入操作,将数据导入到HIVE的ODS层
中,对数据进行清洗转换成处理工作,处理之后对数据进行统计分析,将统计分析的结果基于sqoop在导出到MySQL中
最后使用FineBi实现图表展示操作,由于分析工作是需要周期性干活,采用Oozie进行自动化的调度工作,整个项目是
基于cloudera manager进行统一监控管理
ODS是什么?
ODS层最好理解,基本上就是数据从源表拉过来,进行etl,比如mysql 映射到hive,那么到了hive里面就是ods层。
ODS 全称是 Operational Data Store,操作数据存储.“面向主题的”,数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。但是,这一层面的数据却不等同于原始数据。在源数据装入这一层时,要进行诸如去噪(例如有一条数据中人的年龄是 300 岁,这种属于异常数据,就需要提前做一些处理)、去重(例如在个人资料表中,同一 ID 却有两条重复数据,在接入的时候需要做一步去重)、字段命名规范等一系列操作。
数据仓库层DW?
数据仓库层(DW),是数据仓库的主体.在这里,从 ODS 层中获得的数据按照主题建立各种数据模型。这一层和维度建模会有比较深的联系。 细分:
- 数据明细层:DWD(Data Warehouse Detail)
- 数据中间层:DWM(Data WareHouse Middle)
- 数据服务层:DWS(Data WareHouse Servce)
DWD明细层?
明细层(ODS, Operational Data Store,DWD: data warehouse detail)
- 概念:是数据仓库的细节数据层,是对STAGE层数据进行沉淀,减少了抽取的复杂性,同时ODS/DWD的信息模型组织主要遵循企业业务事务处理的形式,将各个专业数据进行集中,明细层跟stage层的粒度一致,属于分析的公共资源
- 数据生成方式:部分数据直接来自kafka,部分数据为接口层数据与历史数据合成。
DWM 轻度汇总层(MID或DWB, data warehouse basis)
- 概念:轻度汇总层数据仓库中DWD层和DM层之间的一个过渡层次,是对DWD层的生产数据进行轻度综合和汇总统计(可以把复杂的清洗,处理包含,如根据PV日志生成的会话数据)。轻度综合层与DWD的主要区别在于二者的应用领域不同,DWD的数据来源于生产型系统,并未满意一些不可预见的需求而进行沉淀;轻度综合层则面向分析型应用进行细粒度的统计和沉淀
- 数据生成方式:由明细层按照一定的业务需求生成轻度汇总表。明细层需要复杂清洗的数据和需要MR处理的数据也经过处理后接入到轻度汇总层。
- 日志存储方式:内表,parquet文件格式。
- 日志删除方式:长久存储。
- 表schema:一般按天创建分区,没有时间概念的按具体业务选择分区字段。
- 库与表命名。库名:dwb,表名:初步考虑格式为:dwb日期业务表名,待定。
- 旧数据更新方式:直接覆盖
DWS 主题层(DM,data market或DWS, data warehouse service)
- 概念:又称数据集市或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。
- 数据生成方式:由轻度汇总层和明细层数据计算生成。
- 日志存储方式:使用impala内表,parquet文件格式。
- 日志删除方式:长久存储。
- 表schema:一般按天创建分区,没有时间概念的按具体业务选择分区字段。
- 库与表命名。库名:dm,表名:初步考虑格式为:dm日期业务表名,待定。
- 旧数据更新方式:直接覆盖
APP?
数据产品层(APP),这一层是提供为数据产品使用的结果数据。 主要是提供给数据产品和数据分析使用的数据,一般会存放在 ES、Mysql 等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。 如我们经常说的报表数据,或者说那种大宽表,一般就放在这里。
应用层(App)
- 概念:应用层是根据业务需要,由前面三层数据统计而出的结果,可以直接提供查询展现,或导入至Mysql中使用。
- 数据生成方式:由明细层、轻度汇总层,数据集市层生成,一般要求数据主要来源于集市层。
- 日志存储方式:使用impala内表,parquet文件格式。
- 日志删除方式:长久存储。
- 表schema:一般按天创建分区,没有时间概念的按具体业务选择分区字段。
- 库与表命名。库名:暂定apl,另外根据业务不同,不限定一定要一个库。(其实就叫app_)就好了
- 旧数据更新方式:直接覆盖。
数据的来源
数据主要会有两个大的来源: 业务库,这里经常会使用 Sqoop 来抽取 我们业务库用的是databus来进行接收,处理kafka就好了。 在实时方面,可以考虑用 Canal 监听 Mysql 的 Binlog,实时接入即可。(有机会补一下这个canal) 埋点日志,线上系统会打入各种日志,这些日志一般以文件的形式保存,我们可以选择用 Flume 定时抽取,也可以用用 Spark Streaming 或者 Storm 来实时接入,当然,Kafka 也会是一个关键的角色。 还有使用filebeat收集日志,打到kafka,然后处理日志
注意: 在这层,理应不是简单的数据接入,而是要考虑一定的数据清洗,比如异常字段的处理、字段命名规范化、时间字段的统一等,一般这些很容易会被忽略,但是却至关重要。特别是后期我们做各种特征自动生成的时候,会十分有用。
ODS、DW → App层
这里面也主要分两种类型:
- 每日定时任务型:比如我们典型的日计算任务,每天凌晨算前一天的数据,早上起来看报表。 这种任务经常使用 Hive、Spark 或者生撸 MR 程序来计算,最终结果写入 Hive、Hbase、Mysql、Es 或者 Redis 中。
- 实时数据:这部分主要是各种实时的系统使用,比如我们的实时推荐、实时用户画像,一般我们会用 Spark Streaming、Storm 或者 Flink 来计算,最后会落入 Es、Hbase 或者 Redis 中。
维表层DIM?
维表层(Dimension)
最后补充一个维表层,维表层主要包含两部分数据:
- 高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别。
- 低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。数据量可能是个位数或者几千几万。
层级的简单分层
DWS:轻度汇总层,从ODS层中对用户的行为做一个初步的汇总,抽象出来一些通用的维度:时间、ip、id,并根据这些维度做一些统计值,比如用户每个时间段在不同登录ip购买的商品数等。这里做一层轻度的汇总会让计算更加的高效,在此基础上如果计算仅7天、30天、90天的行为的话会快很多。我们希望80%的业务都能通过我们的DWS层计算,而不是ODS。
DWD:这一层主要解决一些数据质量问题和数据的完整度问题。比如用户的资料信息来自于很多不同表,而且经常出现延迟丢数据等问题,为了方便各个使用方更好的使用数据,我们可以在这一层做一个屏蔽。(汇总多个表)
DIM:这一层比较单纯,举个例子就明白,比如国家代码和国家名、地理位置、中文名、国旗图片等信息就存在DIM层中。
TMP:每一层的计算都会有很多临时表,专设一个DWTMP层来存储我们数据仓库的临时表。
DWS 与 DWD?
问答一: dws 和 dwd 的关系问:dws 和dwd 是并行而不是先后顺序?答:并行的,dw 层问:那其实对于同一个数据,这两个过程是串行的?答:dws 会做汇总,dwd 和 ods 的粒度相同,这两层之间也没有依赖的关系问:对呀,那这样 dws 里面的汇总没有经过数据质量和完整度的处理,或者单独做了这种质量相关的处理,为什么不在 dwd 之上再做汇总呢?我的疑问其实就是,dws的轻度汇总数据结果,有没有做数据质量的处理?答:ods 直接到 dws 就好,没必要过 dwd,我举个例子,你的浏览商品行为,我做一层轻度汇总,就直接放在 dws 了。但是你的资料表,要从好多表凑成一份,我们从四五份个人资料表中凑出来了一份完整的资料表放在了 dwd 中。然后在 app 层,我们要出一张画像表,包含用户资料和用户近一年的行为,我们就直接从dwd中拿资料, 然后再在 dws 的基础上做一层统计,就成一个app表了。当然,这不是绝对,dws 和 dwd 有没有依赖关系主要看有没有这种需求。
ODS与DWD区别?
问:还是不太明白 ods 和 dwd 层的区别,有了 ods 层后感觉 dwd 没有什么用了。答:嗯,我是这样理解的,站在一个理想的角度来讲,如果 ods 层的数据就非常规整,基本能满足我们绝大部分的需求,这当然是好的,这时候 dwd 层其实也没太大必要。 但是现实中接触的情况是 ods 层的数据很难保证质量,毕竟数据的来源多种多样,推送方也会有自己的推送逻辑,在这种情况下,我们就需要通过额外的一层 dwd 来屏蔽一些底层的差异。问:我大概明白了,是不是说 dwd 主要是对 ods 层做一些数据清洗和规范化的操作,dws 主要是对 ods 层数据做一些轻度的汇总?答:对的,可以大致这样理解。
app层干什么的?
问答三:app 层是干什么的?问:感觉数据集市层是不是没地方放了,各个业务的数据集市表是应该在 dwd 还是在 app?答:这个问题不太好回答,我感觉主要就是明确一下数据集市层是干什么的,如果你的数据集市层放的就是一些可以供业务方使用的宽表表,放在 app 层就行。如果你说的数据集市层是一个比较泛一点的概念,那么其实 dws、dwd、app 这些合起来都算是数据集市的内容。问:那存到 Redis、ES 中的数据算是 app层吗?答:算是的,我个人的理解,app 层主要存放一些相对成熟的表,能供业务侧使用的。这些表可以在 Hive 中,也可以是从 Hive 导入 Redis 或者 ES 这种查询性能比较好的系统中。